Alle Kategorien
Suche

Trägheitsmoment einer Hantel - Anleitung

Eine Hantel besteht - grob gesagt - aus zwei (schweren) Gewichten, oft Kugeln, die sich, getragen von einer (leichteren) Stange, in einem bestimmten Abstand voneinander befinden. Wie sich dieser Körper bei einer Rotation verhält, lässt sich mithilfe des Trägheitsmomentes bestimmen.

Versetzen Sie die Hanteln in Rotation.
Versetzen Sie die Hanteln in Rotation.

Was ist ein Trägheitsmoment?

Trägheitsmoment ist eine physikalische Größe. Es beschreibt den Widerstand eines Körpers, den dieser einer Rotation entgegensetzt - ähnlich wie eine träge Masse sich einer Bewegungsänderung widersetzt. Mit anderen Worten: Bei Drehbewegungen spielt das Trägheitsmoment dieselbe Rolle wie die Träge Masse bei der geradlinigen Bewegung. Daher wurde das Trägheitsmoment früher auch "Drehmasse" genannt.

  • Wirkt auf einen Körper ein Drehmoment von außen ein, so bestimmt das Trägheitsmoment des Körpers die Drehbeschleunigung.
  • Für ein Massenstückchen m, das sich im Abstand r von einer Drehachse befindet, ist das Trägheitsmoment I = m * r² (in der Einheit "kgm²).

Bei einem ausgedehnten Körper addieren sich die Trägheitsmomente aller (kleinen) Massen bzw. Massenpunkte; im Grenzfall einer kontinuierlich verteilten Masse hat man es mit einem Integral über die gesamte Masse sowie deren unterschiedlichen Abständen zur Drehachse zu tun. In manchen Fällen ist das "Knacken" eines solchen Integrals erheblicher mathematischer Aufwand. 

Eine Hantel rotiert - so können Sie vorgehen

  1. Vereinfachen Sie zunächst das Problem. Im betrachteten Fall bestehe die Hantel aus einer Stange, deren Masse im Verhältnis zu den beiden an ihren Enden befindlichen Kugeln vernachlässigt werden soll (ansonsten müssen Sie noch zusätzlich das Trägheitsmoment einer rotierenden Stange berechnen).
  2. Die Hantel rotiert um eine Achse, die durch die Mitte der Stange geht und senkrecht zu dieser ist. Die beiden Kugeln haben eine identische Masse m sowie den Abstand r zur Drehachse. Vernachlässigt ist hier ebenfalls die Ausdehnung der Kugeln, was zu unterschiedlichen Drehachsenabständen und einer Integration führen würde.
  3. Mit diesen Näherungen ergibt sich für das Trägheitsmoment einer Hantel I = 2m * r². Beachten Sie, dass zwei Massen zum Drehen gebracht werden. 
  4. Bei einer Masse m = 0,5 kg und einem Abstand r = 0,2 m von der Drehachse erhalten Sie I = 1 kg * (0,2 m)² = 0,04 kgm². Zum Vergleich: In der gleichen Größenordnung liegen die Trägheitsmomente von Spielzeugkreiseln, wenn sich diese um ihre Drehachse rotieren. 
Teilen: